A framework of verified eigenvalue bounds for self-adjoint differential operators

نویسنده

  • Xuefeng Liu
چکیده

For eigenvalue problems of self-adjoint differential operators, a universal framework is proposed to give explicit lower and upper bounds for the eigenvalues. In the case of the Laplacian operator, by applying Crouzeix–Raviart finite elements, an efficient algorithm is developed to bound the eigenvalues for the Laplacian defined in 1D, 2D and 3D spaces. Moreover, for nonconvex domains, for which case there may exist singularities of eigenfunctions around re-entrant corners, the proposed algorithm can easily provide eigenvalue bounds. By further adopting the interval arithmetic, the explicit eigenvalue bounds from numerical computations can be mathematically correct. 2015 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion

On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.

متن کامل

Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations

— In this work we extend a previous work about the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint differential operators with small multiplicative random perturbations, by treating the case of operators on compact manifolds.

متن کامل

An Unusual Self-adjoint Linear Partial Differential Operator

In an American Mathematical Society Memoir, to appear in 2003, the authors Everitt and Markus apply their prior theory of symplectic algebra to the study of symmetric linear partial differential expressions, and the generation of self-adjoint differential operators in Sobolev Hilbert spaces. In the case when the differential expression has smooth coefficients on the closure of a bounded open re...

متن کامل

Non-self-adjoint Differential Operators

We describe methods which have been used to analyze the spectrum of non-self-adjoint differential operators, emphasizing the differences from the self-adjoint theory. We find that even in cases in which the eigenfunctions can be determined explicitly, they often do not form a basis; this is closely related to a high degree of instability of the eigenvalues under small perturbations of the opera...

متن کامل

Inertia law for spectral stability of solitary waves in coupled nonlinear Schrödinger equations

Spectral stability analysis for solitary waves is developed in the context of the Hamiltonian system of coupled nonlinear Schrödinger equations. The linear eigenvalue problem for a non-self-adjoint operator is studied with two self-adjoint matrix Schrödinger operators. Sharp bounds on the number and type of unstable eigenvalues in the spectral problem are found from the inertia law for quadrati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 267  شماره 

صفحات  -

تاریخ انتشار 2015